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respect to altitude. The earth magnetic field is inversely 
proportional to third power of orbit height. To determine the 
magnetic torque values, details about the strength and 
direction of earth magnetic field, magnetic dipole moment of 
the spacecraft, and orientation of the dipole relative to the 
local magnetic field vector are needed, the magnetic flux 
density at various heights can be obtained using onboard 
magnetic meter. The strength and direction of dipole moment 
depends on (i) The amount of current flowing through coil, (ii) 
The direction of current flowing through coil, (iii) The number 
of turns in the coil, (iv) The total area enclosed by the coil. 
From above points, increasing length of wire and number of 
turns may increase dipole moment. But it also increases the 
weight of magnetic torquer. The amount of current flowing 
through the coil cannot be increased, because of limited power 
available in the satellite. 

3. DESIGN ALGORITHM 

After explaining the magnetic torquer principles, design 
algorithm is the next step for designing magnetic torquer. 

 

Fig. 2: Design algorithm 

4. SPECIFICATIONS 

The required specification for designing magnetic torquer with 
dipole moment is described as follows. 

Core dimension: 

 Length= 325mm 

 Diameter = 14.5mm 

Maximum current = 100mA 

Power consumption = 0.5W 

Dipole moment = 6Am2 

5. COIL DESIGN 

Designing a coil for a satellite differs from that of commercial 
coils, because of its operation in the vacuum space. The 
magnetic torquer should produce required dipole moment 
within available power. 32 AWG copper wire (enameled) 
chosen for magnetic torquer because of its minimum 
resistance (0.538Ω/m), minimum resistivity (1.68x10-8Ω.m), 
high conductivity (5.96x107S/m) fusing current capacity 
(0.5A) which in turn fulfill the design specification. 

6. CORE SELECTION 

Magnetic Materials are grouped into three categories. (i) 
Diamagnetic material which creates an induced magnetic field 
in a direction opposite to an externally applied magnetic field, 
and also repelled by the applied magnetic field. (ii) 
Paramagnetic material which are slightly attracted by a 
magnetic field and the material do not retain the magnetic 
properties when the external field is removed. (iii) 
Ferromagnetic material which is able to retain their magnetic 
properties after the external magnetic field has been removed. 
The ferromagnetic materials are classified into two categories 
(i) Soft materials (ii) Hard materials. The Hard materials are 
difficult to magnetize, but once magnetized it’s not easy to 
demagnetize, the magnetization will occur only at high 
magnetic field. Mostly soft magnetic materials are chosen as 
core material because of its high permeability, low coercivity, 
and easy magnetization. In this work, a soft ferromagnetic 
material- Moly Permalloy (Nickel (80%) – Iron (14.8%) – 
Molybdenum (4.4%)) was chosen because of its high magnetic 
permeability low coercivity, and near zero magnetostriction. 

7. MATERIALS AND METHODS 

7.1 Theoretical formula 

Magnetic flux density (B), Dipole moment (M) and Torque 
(T) are theoretically calculated by the following formulas 
(7.1)-(7.3) 

d

r

Magnetic flux density(B)=
NI

1
L( N )








……… ... (7.1) 

2

d
r

r NI
Dipole Moment(M) = 

1
N






 ………………. (7.2) 

 

T o rq u e  (T )= B *M …….…………… ………….. (7.3) 

Note: Refer table 1 for nomenclature. 

7.2 Simulation formula 

Magnetic flux densities (B) for various current inputs are 
obtained from the simulation using the “Computer Simulation 
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Fig. 5 shows the magnetic flux density distribution for the 
material chosen with input current of 100mA. Simulations 
were done for various input current values and the result 
values shown in table 4. 

8. RESULTS AND DISCUSSIONS 

8.1 Dipole moment  

Table 3 and table 4 shows the dipole moment for various 
current and respective magnetic flux density values obtained 
based on theoretical calculations and numerical simulation. It 
also shows that required dipole moment (6Am2) can be 
obtained by passing 80mA current through the magnetic 
torquer which in turns saving 20mA. 

Table 3: Dipole moments for various current inputs (Theoretical) 

No Current (mA) Magnetic flux 
density (G) 

Dipole moment 
(Am2) 

1 20 0.03 1.27 
2 40 0.06 2.63 
3 60 0.09 3.91 
4 80 0.12 5.21 
5 100 0.15 6.40 

 
Table 4: Dipole moments for various current inputs (Simulation) 

No Current (mA) Magnetic flux 
density (T) 

Dipole moment 
(Am2) 

1 20 0.03 1.5 
2 40 0.07 3.1 
3 60 0.11 4.7 
4 80 0.15 6.4 
5 100 0.18 8 

From the tables 3 and 4, its clear that material properties are 
the important factor to determine the Dipole moment. 

8.2 Torque  

Table 5 and table 6 shows the values of torque for various 
current inputs calculated by using theoretical formulas and 
Numerical simulations respectively. The torque value is 
mainly depends on magnetic flux density. So the similar trend 
obtained in the torque values 

Table 5: Torque for various current inputs (Theoretical) 

No. Current (mA) Torque (N.m) 
1 20 0.03 
2 40 0.16 
3 60 0.36 
4 80 0.64 
5 100 0.98 

 
Table 6: Torque for various current inputs (Simulation) 

No. Current (mA) Torque (N.m) 
1 20 0.05 
2 40 0.22 
3 60 0.52 

4 80 0.96 
5 100 1.48 

 

From table 5 and table 6 it’s clear that, obtained torque values 
are high in simulation compared with theoretical result for the 
corresponding current values. 

 

Fig. 6: Current vs Dipole moment 

 

Fig. 7: Current vs Torque 

Theoretical and numerical simulation results for dipole 
moment and torque were plotted against the respective current 
values is shown in Fig. 6 and 7 respectively. The Fig. 6 and 7 
indicates the linear pattern of both the dipole moment and 
torque values. 
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9. CONCLUSION 

In this paper, specifications for magnetic torque are 
established first and based on those design parameters, 
theoretical calculation and simulation results are obtained. The 
theoretical results are based on electrical properties and 
simulation results are based on material properties. From the 
results material properties of the magnetic torquer is an 
important factor to determine the power consumption to 
produce the required dipole moment and magnetic torquer.  
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